Testing of Hypothesis

A quick reference to work on the applications of various Tests of Significance

Department of Statistics
P.R. Government College (A)

Kakinada

Parametric Tests

Tests for Mean(s) (for variables)

Large Samples ($\mathrm{n} \geq 30$)
Single Mean: (Z-test)
NH : The difference between
hypothetical mean and
sample mean is not
significant.
Test formula: $Z=\frac{\bar{x}-\mu}{[\sigma / \sqrt{ } n]}$

Small Samples ($\mathbf{n}<\mathbf{3 0}$)
Single Mean: (t-test)
NH : The difference between
hypothetical mean and
sample mean is not
significant.
Test formula: $t=\frac{\bar{x}-\mu}{[s / v(n-1)]}$
$d f=n-1$

Application areas:
Testing average marks, height, sales, yield of a crop, etc in a population

Tests for Mean(s) (for variables)

Large Samples ($\mathrm{n} \geq 30$)

Two Means: (Z-test)
NH : The difference between two sample means is not significant.
Test formula:

$$
Z=\frac{\bar{x}_{1}-\bar{x}_{2}}{V\left[\sigma_{1}^{2} / n_{1}+\sigma_{2}^{2} / n_{2}\right]}
$$

Application areas:
Testing the significance difference between average marks, heights, sales, yields of a crop, etc in two different populations.

Tests for Mean(s) (for variables)

Small Samples ($\mathbf{n}<30$)

Two Dependent Means: (paired t-test)
NH: The difference between means of samples of two populations of same units before and after some activity is not significant.

Test formula:

$$
\begin{aligned}
& \quad t=d V(n-1) / s_{d} \\
& \text { where, } d=x_{1}-x_{2} \\
& d f=n-1
\end{aligned}
$$

Application areas:

Testing the significance difference between average marks of students before and after extra coaching, , average heights of children before and after extra vitamin diet, average sales before and after advertisement, average yields of a crop before and after applying a special fertilizer, etc

Tests for proportions(s) (for attributes)

Large Samples ($\mathrm{n} \geq 30$)

Single Proportion: (Z-test)

NH : The difference between hypothetical proportion and sample proportion is not significant.
Test formula: $\mathbf{Z}=\mathrm{p}-\mathrm{P}$

Application areas:
Testing the proportion with respect to an attribute like, gender, drinking, attacking a disease, mode of education, etc in a population

Two Proportions: (Z-test)
NH : The difference between two sample proportions is not significant.
Test formula:

$$
Z=\frac{p_{1}-p_{2}}{V\left[p q\left(1 / n_{1}+1 / n_{2}\right)\right]}
$$

where, $\mathrm{p}=\left(\mathrm{x}_{1}+\mathrm{x}_{2}\right) /\left(\mathrm{n}_{1}+\mathrm{n}_{2}\right)$

Application areas:

Testing the significance difference between proportions with respect to an attribute like, gender, drinking, attacking a disease, mode of education, etc in two populations

Tests for variance(s) (for variables)

Large Samples ($\mathrm{n} \geq 30$)
Single S.D: (Z-test)
NH : The difference between hypothetical SD and sample SD is not significant.

Test formula: $Z=\frac{s-\sigma}{[\sigma / \sqrt{ } 2 n]}$

Application areas:
Testing the variance in marks, height, sales, yield of a crop, etc in a population

Tests for Variances(s) (for variables)

Large Samples ($\mathrm{n} \geq 30$)

Two SD's: (Z-test)
NH : The difference between two sample SD's is not significant.

Test formula:

$$
Z=\frac{s_{1}-s_{2}}{V\left[s_{1}^{2} / 2 n_{1}+s_{2}^{2} / 2 n_{2}\right]}
$$

Application areas:

Small Samples ($\mathbf{n}<30$)

Two Variances: (F-test)
NH: The difference between two sample variances is not significant.
Test formula:

$$
\mathrm{F}=\frac{\mathrm{S}_{1}{ }^{2}}{\mathrm{~S}_{2}{ }^{2}}
$$

where,

$$
S^{2}=n s^{2} /(n-1)
$$

$$
d f=\left(n_{1}-1, n_{2}-1\right)
$$

Testing the significance difference between variances in marks, heights, sales, yields of a crop, etc in two different populations.

χ^{2}-tests (for attributes)

Small Samples ($\mathbf{n}<30$)

Goodness of fit:

NH : The difference between observed and expected frequencies is not significant.

Test formula: $\chi^{2}=\Sigma\left[(\mathrm{Oi}-\mathrm{Ei})^{2} / \mathrm{Ei}\right]$ $\mathrm{df}=\mathrm{n}-1$
Application areas:
Testing the theoretical assumptions like the figures from any probability law, figures related to genetics, etc

Independence of attributes:

NH: The two attributes are independent
Test formula:

$$
\chi^{2}=\Sigma \Sigma\left\{\left[(A B)_{o}-(A B)_{e}\right]^{2} /(A B)_{e}\right\}
$$

$$
d f=(m-1)(n-1)
$$

Application areas:
Testing the association between any two attributes like vaccination and curing a disease, lockdown and controlling corona, education and improvement in technology, etc

Non-Parametric Tests

(Appropriate for only nominal and ordinal data)

Sign test

One Sample Sign Test:

NH : The median of the population is M_{0} (a specified value).
Test formula:

$$
p=\left(1 / 2^{n}\right) \sum^{n} c_{u}
$$

where, $u=\min \left\{u^{+}, u^{-}\right\}$
$u^{+}=$no. of observations $>M_{o}$
$u^{-}=$no. of observations $<M_{\text {o }}$
$\mathrm{n}=\mathrm{u}^{+}+\mathrm{u}^{-}$
If $n>30$, May apply Z-test (approx)

$$
Z=(u-n / 2) / V(n / 4)
$$

Application areas:
Testing the average (median) marks, height, weight, income, etc (testing the data with two levels)

Paired Sample Sign Test:
NH: The distributions of two populations are equal.
Test formula:

$$
p=\left(1 / 2^{n}\right) \Sigma^{n} c_{u}
$$

where, $u=\min \left\{u^{+}, u^{-}\right\}$

$$
\begin{aligned}
& u^{+}=\text {no. of d's }>0 \\
& u^{-}=\text {no. of d's }<0 \\
& d=x-y \\
& n=u^{+}+u^{-}
\end{aligned}
$$

If $n>30$, May apply Z-test (approx)

$$
Z=(u-n / 2) / V(n / 4)
$$

Application areas:

Testing the significance difference between distributions of marks, heights, income, etc of two populations of same units

Signed Rank test

(an alternative to Sign test)

One Sample Signed Rank Test:

NH : The median of the population is
M_{0} (a specified value).
Test formula:

$$
R=\operatorname{Min}\left\{R^{+}, R^{-}\right\}
$$

where,

$$
\begin{aligned}
& \mathrm{R}^{+}= \text {Sum of ranks of +ve } \\
& \text { } \begin{array}{l}
\text { deviations }(x-M o) \\
\mathrm{R}^{-}= \\
\text {Sum of ranks of -ve } \\
\text { deviations }(x-\mathrm{Mo})
\end{array}
\end{aligned}
$$

If $n>30$, May apply Z-test (approx)

$$
Z=\frac{R-n(n+1) / 4}{V[n(n+1)(2 n+1) / 24]}
$$

Application areas:
Testing the average (median) marks, height, weight, income, etc (testing the data with two levels)

Paired Sample Signed Rank Test:
NH: The distributions of two populations are equal.
Test formula:

$$
R=\operatorname{Min}\left\{R^{+}, R^{-}\right\}
$$

where,

$$
\mathrm{R}^{+}=\text {Sum of ranks of }+\mathrm{ve}
$$

$$
\text { deviations (} x-y \text {) }
$$

$R^{-}=$Sum of ranks of -ve deviations($x-y$)
If $n>30$, May apply Z-test (approx)

$$
Z=\frac{R-n(n+1) / 4}{V[n(n+1)(2 n+1) / 24]}
$$

Application areas:

Testing the significance difference between distributions of marks, heights, income, etc of two populations of same units

Run test

(by Wald-Wolfowitz)

One Sample Run Test(or Test

 for Randomness) :NH : The sample is drawn at random.

Test formula:

$$
r=n o . \text { of runs }
$$

here, runs are counted from the sequence of sample in given order by observing that they are > or < median

If $n>25$, May apply $\mathbf{z - t e s t}$ (approx)
$Z=\frac{r-(n+2) / 2}{V[n(n-2) / 4(n-1)]}$
Application areas:
Testing the randomness of any observed sample which is an essential principle in all statistical analyses

Two Samples Run Test:
NH : The distributions of two populations are equal.
Test formula:

$$
r=\text { no. of runs }
$$

here, runs are counted from the sequence of combined ordered sample by observing that they are of $1^{\text {st }}$ sample or $2^{\text {nd }}$ sample

$$
\begin{aligned}
& \text { If } n_{1}, n_{2}>10 \text {, May apply } z \text {-test (approx) } \\
& Z=\frac{r-\left\{\left[2 n_{1} n_{2} /\left(n_{1}+n_{2}\right)\right]+1\right\}}{V\left[2 n_{1} n_{2}\left(2 n_{1} n_{2}-n_{1}-n_{2}\right) /\left(n_{1}+n_{2}\right)^{2}\left(n_{1}+n_{2}-1\right)\right]}
\end{aligned}
$$

Application areas:
Testing the significance difference between distributions of marks, heights, income, etc of two populations

U- test and Median test

U-Test for two samples

(Wilcoxon-Mann-Witney U-test) :
NH : The distributions of two populations are equal.
Test formula:

$$
U=\min \left\{U_{1}, U_{2}\right\}
$$

where, $U_{1}=n_{1} n_{2}+n_{1}\left(n_{1}+1\right) / 2-R_{1}$

$$
U_{2}=n_{1} n_{2}+n_{2}\left(n_{2}+1\right) / 2-R_{2}
$$

$R_{1}, R_{2}=$ Sum of the ranks of $1^{\text {st }}$ and
$2^{1 d d}$ sample values in combined
ordered sample.
If $\mathrm{n}_{1}, \mathrm{n}_{2}>8$, May apply z -test (approx)

$$
Z=\frac{U-n_{1} n_{2} / 2}{V\left[n_{1} n_{2}\left(n_{1}+n_{2}+1\right) / 12\right]}
$$

Application areas:

Testing the significance difference between distributions of marks, heights, income, etc of two populations

Median test for two Samples:

NH : The distributions of two populations are equal.
Test formula:
$\mathrm{p}=\sum_{\mathrm{m} 1=1}\left\{{ }^{\mathrm{n} 1} \mathrm{c}_{\mathrm{m} 1}{ }^{* n 2} \mathrm{c}_{\mathrm{m} 2} /{ }^{(\mathrm{n} 1+\mathrm{n} 2)} \mathrm{c}_{(\mathrm{m} 1+\mathrm{m} 2)}\right\}$
where, $m 1, m 2=$ no. of observations of $1^{\text {st }}$ and $2^{\text {nd }}$ sample $>$ median of combined ordered sample

If $n_{1}, n_{2}>10$, May apply χ^{2}-test (approx)
$\chi^{2}=\frac{N[|a d-b c|-N / 2]^{2}}{(a+b)(c+d)(a+c)(b+d)}$
here, $a=m_{1}, b=m_{2}, c=n_{1}-m_{1}, d=n_{2}-m_{2}$

Application areas:

Testing the significance difference between distributions of marks, heights, income, etc of two populations

Notations:

-> NH - Null Hypothesis
-> n = sample size
$->\bar{x}=$ sample mean $=\sum x / n$
$->s=$ sample $S D=V\left[\sum x^{2} / n-\bar{x}^{2}\right]$
-> V - square root
-> $\mu=$ population mean
-> $\sigma=$ population SD
$->p=$ sample proportion $=x / n$
$->P=$ population proportion
$->Q=1-P$
$->O=(A B)_{0}=$ observed frequency
$->E=(A B)_{e}=$ expected frequency

